61 research outputs found

    Multi-Modal Human Verification Using Face and Speech

    Get PDF

    Face Recognition Using Optimized 3D Information from Stereo Images

    Get PDF
    Human biometric characteristics are unique, so it can not be easily duplicated [1]. Such information includes; facial, hands, torso, fingerprints, etc. Potential applications, economical efficiency, and user convenience make the face detection and recognition technique an important commodity compared to other biometric features [2], [3]. It can als

    PU-EdgeFormer: Edge Transformer for Dense Prediction in Point Cloud Upsampling

    Full text link
    Despite the recent development of deep learning-based point cloud upsampling, most MLP-based point cloud upsampling methods have limitations in that it is difficult to train the local and global structure of the point cloud at the same time. To solve this problem, we present a combined graph convolution and transformer for point cloud upsampling, denoted by PU-EdgeFormer. The proposed method constructs EdgeFormer unit that consists of graph convolution and multi-head self-attention modules. We employ graph convolution using EdgeConv, which learns the local geometry and global structure of point cloud better than existing point-to-feature method. Through in-depth experiments, we confirmed that the proposed method has better point cloud upsampling performance than the existing state-of-the-art method in both subjective and objective aspects. The code is available at https://github.com/dohoon2045/PU-EdgeFormer.Comment: Accepted to ICASSP 202

    Fast Motion Deblurring Using Sensor-Aided Motion Trajectory Estimation

    Get PDF
    This paper presents an image deblurring algorithm to remove motion blur using analysis of motion trajectories and local statistics based on inertial sensors. The proposed method estimates a point-spread-function (PSF) of motion blur by accumulating reweighted projections of the trajectory. A motion blurred image is then adaptively restored using the estimated PSF and spatially varying activity map to reduce both restoration artifacts and noise amplification. Experimental results demonstrate that the proposed method outperforms existing PSF estimation-based motion deconvolution methods in the sense of both objective and subjective performance measures. The proposed algorithm can be employed in various imaging devices because of its efficient implementation without an iterative computational structure

    Low-Rank Representation-Based Object Tracking Using Multitask Feature Learning with Joint Sparsity

    Get PDF
    We address object tracking problem as a multitask feature learning process based on low-rank representation of features with joint sparsity. We first select features with low-rank representation within a number of initial frames to obtain subspace basis. Next, the features represented by the low-rank and sparse property are learned using a modified joint sparsity-based multitask feature learning framework. Both the features and sparse errors are then optimally updated using a novel incremental alternating direction method. The low-rank minimization problem for learning multitask features can be achieved by a few sequences of efficient closed form update process. Since the proposed method attempts to perform the feature learning problem in both multitask and low-rank manner, it can not only reduce the dimension but also improve the tracking performance without drift. Experimental results demonstrate that the proposed method outperforms existing state-of-the-art tracking methods for tracking objects in challenging image sequences

    Object Detection and Tracking-Based Camera Calibration for Normalized Human Height Estimation

    Get PDF
    This paper presents a normalized human height estimation algorithm using an uncalibrated camera. To estimate the normalized human height, the proposed algorithm detects a moving object and performs tracking-based automatic camera calibration. The proposed method consists of three steps: (i) moving human detection and tracking, (ii) automatic camera calibration, and (iii) human height estimation and error correction. The proposed method automatically calibrates camera by detecting moving humans and estimates the human height using error correction. The proposed method can be applied to object-based video surveillance systems and digital forensic

    Partial Block Scheme and Adaptive Update Model for Kernelized Correlation Filters-Based Object Tracking

    No full text
    In visual object tracking, the dynamic environment is a challenging issue. Partial occlusion and scale variation are typical challenging problems. We present a correlation-based object tracking based on the discriminative model. To attenuate the influence by partial occlusion, partial sub-blocks are constructed from the original block, and each of them operates independently. The scale space is employed to deal with scale variation using a feature pyramid. We also present an adaptive update model with a weighting function to calculate the frame-adaptive learning rate. Theoretical analysis and experimental results demonstrate that the proposed method can robustly track drastic deformed objects. The sparse update reduces the computational cost for real-time tracking. Although the partial block scheme generation increases the computational cost, we present a novel sparse update approach to reduce the computational cost drastically for real-time tracking. The experiments were performed on a variety of sequences, and the proposed method exhibited better performance compared with the state-of-the-art trackers

    CF-CNN: Coarse-to-Fine Convolutional Neural Network

    No full text
    In this paper, we present a coarse-to-fine convolutional neural network (CF-CNN) for learning multilabel classes. The basis of the proposed CF-CNN is a disjoint grouping method that first creates a class group with hierarchical association, and then assigns a new label to a class belonging to each group so that each class acquires multiple labels. CF-CNN consists of one main network and two subnetworks. Each subnetwork performs coarse prediction using the group labels created by the disjoint grouping method. The main network includes a refine convolution layer and performs fine prediction to fuse the feature maps acquired from the subnetwork. The generated class set in the upper level has the same classification boundary to that in the lower level. Since the classes belonging to the upper level label are classified with a higher priority, parameter optimization becomes easier. In experimental results, the proposed method is applied to various classification tasks to show a higher classification accuracy by up to 3% with a much smaller number of parameters without modification of the baseline model
    • …
    corecore